EXISTENCE OF \mathcal{N} -INJECTORS IN A NOT CENTRAL NORMAL FITTING CLASS

M. J. IRANZO AND F. PÉREZ MONASOR

ABSTRACT

If we denote by L(G) the semisimple radical of a group G, we prove in this paper that $\mathcal{L} = \{G \mid G = C_G(L(G))L(G)\}$ is a not central normal Fitting class. Moreover, all \mathcal{L} -groups have \mathcal{N} -injectors.

Introduction. Notation

All groups considered throughout this paper will be finite. \mathcal{N} is the class of nilpotent groups. The concept of semisimple groups is taken from Gorenstein-Walter's paper ([2]). A Fitting class \mathcal{F} is said to be central if $G/G_{\mathcal{F}}$ is abelian for every group G ([6]). The remainder notation is standard and is taken mainly from ([3]).

A group G is \mathcal{N} -constrained if $C_G(F(G)) \leq F(G)$ ([7]). The class of \mathcal{N} -constrained groups is an extensible Fitting class that contains the solvable groups and a group G is \mathcal{N} -constrained if and only if L(G) = 1 ([5]), [8]).

A. Mann proves that a \mathcal{N} -constrained group has an unique conjugacy class of \mathcal{N} -injectors which are the maximal nilpotent subgroups containing F(G). Blessenohl and Laue prove that all groups have an unique conjugacy class of \mathcal{H} -injectors, where \mathcal{H} is the class of quasinilpotent groups, i.e. $\mathcal{H} = \{G \mid G = F(G)L(G) = F^*(G)\}$, moreover these injectors are the maximal- \mathcal{H} -subgroups containing $F^*(G)$. It is well known that $C_G(F^*(G)) \leq F(G)$ for every group G ([4]).

The aim of this paper is mainly to prove the following results:

Theorem A. For every group G we have:

- (a) If V is a \mathcal{H} -injector of G then $V \leq G_{\mathcal{F}}$.
- (b) If $G_{\mathscr{S}} \leq U \leq G$, $U \in \mathscr{L}$ then $U = L(U)G_{\mathscr{S}}$.

THEOREM B. Let G be a \mathcal{L} -group, then G contains \mathcal{N} -injectors which are the product of an \mathcal{N} -injector of L(G) and an \mathcal{N} -injector of $C_G(L(G))$.

Notice that all \mathcal{N} -constrained groups are \mathcal{L} -groups.

Before proving the theorems we give the following results:

LEMMA 1. Let N be a normal subgroup of the semisimple group G. Then either $N \le Z(G)$ or N' is semisimple nontrivial and N'Z(N) = N.

PROOF. Since G is semisimple, G/Z(G) is a direct product of nonabelian simple groups. As $NZ(G)/Z(G) \triangleleft G/Z(G)$, then either $N \subseteq Z(G)$ or NZ(G)/Z(G) is a direct product of nonabelian simple groups too. We assume the last case:

Hence N/Z(N) is also a direct product of nonabelian simple groups and by Gorenstein-Walter's property, N' is semisimple and covers N/Z(N).

LEMMA 2. A group G contains N-injectors if and only if G/Z(G) contains N-injectors.

PROOF. Let H be an \mathcal{N} -injector of G and $G^*/Z(G) \leq G/Z(G)$ then $H/Z(G) \cap G^*/Z(G) = (H \cap G^*)/Z(G)$. Since $H \cap G^*$ is an \mathcal{N} -maximal subgroup of G^* it follows that $(H \cap G^*)/Z(G)$ is an \mathcal{N} -maximal subgroup of $G^*/Z(G)$.

Conversely, assume that H/Z(G) is an \mathcal{N} -injector of G/Z(G) and $G^* \triangleleft \triangleleft G$. Let $H \cap G^* \subseteq F \subseteq G^*$, F nilpotent, then we have:

$$(H \cap G^*Z(G))/Z(G) \le FZ(G)/Z(G) \le G^*Z(G)/Z(G) \le G/Z(G),$$

hence $FZ(G) = (H \cap G^*)Z(G)$ and so

$$F=F\cap (H\cap G^*)Z(G)=(H\cap G^*)(F\cap Z(G))\leqq H\cap G^*.$$

COROLLARY 1. If G is a semisimple group then G contains \mathcal{N} -injectors.

PROOF. Evidently the \mathcal{N} -maximal subgroups of a simple group are its \mathcal{N} -injectors. If G is a direct product of nonabelian simple groups $G = N_1 \times \cdots \times N_r$ and H_i is an \mathcal{N} -injector of N_i then $H_1 \times \cdots \times H_r$ is an \mathcal{N} -injector of G.

Let G be a semisimple group, then G/Z(G) is a direct product of nonabelian simple groups ([2]), hence G/Z(G) has \mathcal{N} -injectors and by Lemma 2 it follows that G has \mathcal{N} -injectors.

LEMMA 3. For every group G, $C_G(L(G))$ is the \mathcal{N} -constrained radical of G.

PROOF. As $L(C_G(L(G)))$ is a semisimple normal subgroup of G thus $L(C_G(L(G))) \le L(G)$, hence $L(C_G(L(G))) \le Z(L(G))$, and since all semisimple groups are perfect groups we obtain $L(C_G(L(G))) = 1$ and so $C_G(L(G))$ is a \mathcal{N} -constrained group.

Assume that N is a N-constrained normal subgroup of G, then L(N) = 1 and by Lemma 1 we obtain [N, L(G)] = 1.

LEMMA 4. For every group G,

$$F^*(G/Z(G)) = F^*(G)/Z(G)$$
.

PROOF. From ([4], X 13. 1-2-3) \mathcal{X} is a Fitting Formation and trivially is closed for central extensions. If we denote $F^*(G/Z(G)) = M/Z(G)$ then $M/Z(M) \in \mathcal{X}$ and thus $M \in \mathcal{X}$, hence $M \leq F^*(G)$.

PROPOSITION. If $\mathcal{L} = \{G \mid G = C_G(L(G))L(G)\}\$ then:

- (a) \mathcal{L} is a Fitting class.
- (b) $G/Z(G) \in \mathcal{L}$ if and only if $G \in \mathcal{L}$.

PROOF. (a) $S_n \mathcal{L} = \mathcal{L}$. It is enough to prove that every maximal normal of a \mathcal{L} -group is a \mathcal{L} -group too. Let G be a \mathcal{L} -group and N a maximal normal subgroup of G. If $L(G) \leq N$ we have:

$$L(G) \leq N \leq C_G(L(G))L(G)$$

so

$$N = N \cap C_G(L(G))L(G) = L(G)C_N(L(G)) = L(N)C_N(L(N))$$

and thus $N \in \mathcal{L}$

If $L(G) \not \leq N$ is G = L(G)N and therefore $C_G(L(G)) \leq N$, because in the contrary case $G = C_G(L(G))N = L(G)N$ and then G/N would be an abelian and semisimple group, hence G/N would be trivial.

Thus

$$N = N \cap C_G(L(G))L(G) = C_G(L(G))(N \cap L(G)).$$

By Lemma 3, $C_G(L(G)) = N \cap C_G(L(G)) = C_N(L(N))$, and by Lemma 1,

$$N = C_N(L(N))(N \cap L(G)) = C_N(L(N))L(N) \in \mathcal{L}.$$

 $N_0\mathcal{L} = \mathcal{L}$. Let N_1 , N_2 be normal subgroups of G and assume $N_i \in \mathcal{L}$, i = 1, 2. Then $N_i = C_{N_i}(L(N_i))L(N_i)$, i = 1, 2. By Lemma 3 we know that

$$C_{N_1N_2}(L(N_1N_2)) \cap N_i = C_{N_i}(L(N_i)), \quad i = 1, 2.$$

Therefore as $L(N_i) \le L(N_1N_2)$, i = 1, 2 we have

$$N_1N_2 = C_{N_1}(L(N_1))L(N_1)C_{N_2}(L(N_2))L(N_2) = C_{N_1N_2}(L(N_1N_2))L(N_1N_2),$$

i.e. N_1N_2 is a \mathcal{L} -group.

(b) Let G/Z(G) be a \mathcal{L} -group, then

$$G/Z(G) = C_{G/Z(G)}(L(G/Z(G)))L(G/Z(G))$$

= $C_{G/Z(G)}(L(G/Z(G))F^*(G/Z(G)).$

By Lemma 4, $F^*(G/Z(G)) = F^*(G)/Z(G)$. We denote $M/Z(G) = C_{G/Z(G)}(L(G/Z(G)))$, since the class of the \mathcal{N} -constrained groups is extensible and by Lemma 3 we have $M = C_G(L(G))$. Thus $G = C_G(L(G))F^*(G) = C_G(L(G))L(G)$.

Conversely if $G = C_G(L(G))L(G)$ then

$$G/Z(G) = C_G(L(G))/Z(G)F^*(G)/Z(G),$$

thus

$$G/Z(G) = C_{G/Z(G)}(L(G/Z(G)))F^*(G/Z(G)),$$

because quotients of \mathcal{N} -constrained groups by central subgroups are \mathcal{N} -constrained too, and by Lemma 4.

PROOF OF THEOREM A.

(a) Let V be a \mathcal{H} -injector of G, then V = F(V)L(V) and $F(G)L(G) \leq V$ thus

$$L(G)F(V)/F(V) = F(G)L(G)F(V)/F(V) \le V/F(V).$$

But as V/F(V) is a direct product of nonabelian simple groups, F(V)L(G)/F(V) is a direct factor of V/F(V). Assume

$$V/F(V) = L(G)F(V)/F(V) \times K/F(V)$$

whence $[K, L(G)] \le F(V)$ and consequently [L(G), K, L(G)] = 1, it follows that L(G) centralizes [L(G), K], whence L(G) centralizes K by the three-subgroups lemma, thus $K \le C_G(L(G))$. Now, as [F(V), L(V)] = 1 and $L(G) \le L(V)$ is $F(V) \le C_G(L(G))$ whence

$$V = L(G)F(V)K \le L(G)C_G(L(G)) = G_{\mathscr{L}}.$$

(b) Assume $G_{\mathscr{L}} \leq U \leq G$ and $U \in \mathscr{L}$, then

$$C_G(L(G))L(G) \leq C_U(L(U))L(U).$$

As $L(G) \leq L(U)$ it follows that

$$C_U(L(U)) \le C_U(L(G)) \le C_G(L(G)) \le U$$

thus $C_U(L(U)) = C_G(L(G))$ by Lemma 3. We have:

$$U = L(U)C_U(L(U)) = L(U)C_G(L(G)) = L(U)L(G)C_G(L(G)) = L(U)G_{\mathcal{L}}$$

COROLLARY 2. For every group G, $G_{\mathscr{L}}$ is a \mathscr{L} -maximal subgroup of G. Therefore \mathscr{L} is a normal Fitting class. Moreover \mathscr{L} is not central.

PROOF. Assume $G_{\mathscr{L}} \leq U \leq G$ with $U \in \mathscr{L}$, then by Theorem (b) we know that $U = L(U)G_{\mathscr{L}}$. Now since $F^*(G) \leq F(U)L(U)$, there exists a \mathscr{K} -injector V of G, containing L(U), hence

$$U = L(U)G_{\mathscr{L}} \leq VG_{\mathscr{L}} = G_{\mathscr{L}}$$

by Theorem (a).

 \mathscr{L} is not central because if we take $G = A_5 \setminus A_5$ then $L(G) = A_5$, $C_G(L(G)) = 1$ and $G/G_{\mathscr{L}} \cong A_5$ is not abelian.

PROOF OF THEOREM B.

By induction on the order of G.

If $Z(G) \neq 1$ then by Proposition and Lemma 3

$$G/Z(G) = C_{G/Z(G)}(L(G/Z(G)))L(G/Z(G))$$
$$= C_G(L(G))/Z(G)L(G)Z(G)/Z(G).$$

If K is an N-injector of L(G) and H is an N-injector of $C_G(L(G))$, then by Lemma 2, KZ(G)/Z(G) and H/Z(G) are N-injectors of L(G)Z(G)/Z(G) and $C_G(L(G))/Z(G)$ respectively, hence by induction HK/Z(G) is an N-injector of G/Z(G) and again, by Lemma 2, HK is an N-injector of G. Therefore we can suppose that Z(G)=1, thus Z(L(G))=1, consequently $G=L(G)\times C_G(L(G))$ and $G/L(G)\cong C_G(L(G))$. We note that HL(G)/L(G) is an N-injector of G/L(G). First, we prove that V=HK is an N-maximal subgroup of G. In fact, assume $V \subseteq V_1 \subseteq G$, V_1 nilpotent, then $HL(G)/L(G) \subseteq V_1L(G)/L(G)$ and so $HL(G)=V_1L(G)$ thus

$$H \leq V \leq V_1 \leq HL(G)$$
,

and since K is an \mathcal{N} -injector of L(G), we have

$$V_1 = H(V_1 \cap L(G)) = HK = V$$

Now let G^* be a subnormal subgroup of G. By Proposition, part (a) is $G^* \in \mathcal{L}$. We prove that $V \cap G^*$ is an \mathcal{N} -maximal subgroup of G^* .

Clearly $H \cap C_{G^*}(L(G^*))$ and $K \cap L(G^*)$ are \mathcal{N} -injectors of $C_{G^*}(L(G^*))$ and $L(G^*)$ respectively and both of them are contained in $V \cap G^*$. By the former considerations $(H \cap C_{G^*}(L(G^*)))(K \cap L(G^*))$ is an \mathcal{N} -maximal subgroup of G^* , hence $V \cap G^*$ is an \mathcal{N} -maximal subgroup of G^* .

REFERENCES

- 1. D. Blessenohl and H. Laue, Fittingklassen endlicher Gruppen, in denen gewisse Haupfaktoren einfach sind, J. Alg. 56 (1979), 516-532.
 - 2. D. Gorenstein and J. Walter, The π -layer of a finite group, Ill. J. Math. 15 (1971), 555-564.
 - 3. B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin, 1967.
 - 4. B. Huppert and N. Blackburn, Finite Groups III, Springer-Verlag, Berlin, 1982.
- 5. R. Laue, Charakterisierung der Fittinggruppe der Automorphismengruppe einer endlichen Gruppe, J. Alg. 40 (1976), 618-626.
 - 6. H. Laue, Über nichauflösbare normale Fittingklassen, J. Alg. 45 (1977), 274-283.
 - 7. A. Mann, Injectors and normal subgroups of finite groups, Isr. J. Math. 9 (1971), 554-558.
- 8. F. Pérez Monasor, Grupos finitos separados respecto de una Formación de Fitting, Rev. Acad. Ciencias de Zaragoza, serie 2^a, XXVIII(3) (1973), 253-301.

DEPARTAMENTO DE ALGEBRA Y FUNDAMENTOS
FACULTAD DE CIENCIAS MATEMÁTICAS
C/DOCTOR MOLINER S/N BURJASOT, VALENCIA, SPAIN